This continuing medical education activity is provided by

VINDICO medical education

This activity is supported by an educational grant from Roche

Hans-Peter Hartung, MD, FRCP, FAAN, FANA
Professor and Chairman
Department of Neurology
Heinrich-Heine-Universität Düsseldorf
Düsseldorf, Germany

Giancarlo Comi, MD
Professor of Neurology
Director
Department of Neurology
Vibo-Salute San Raffaele University
Vibo-Valentia, Italy

Stephen L. Hauser, MD
Director
UCSF Weill Institute for Neurosciences
Professor and Chair
Department of Neurology
University of California, San Francisco
San Francisco, CA

Xavier Montalban, MD, PhD
Chairman, Department of Neurology
Neurometabolism
Director, MS Centre of Catalonia
 Vall d’Hebron University Hospital
Barcelona, Spain

© 2016 Vindico Medical Education, LLC. All rights reserved.
Differentiating Disease and the Role of the Immune System

Giancarlo Comi, MD
Professor of Neurology
Director, Department of Neurology
Vita-Salute San Raffaele University
Milan, Italy

Disclosure

- Consulting Fee: Almirall, Biogen, Excemed, Forward Pharma, Genzyme, Merck, Novartis, Receptos, Roche, Sanofi, Teva
- Non-CME Services Fees: Almirall, Biogen, Excemed, Forward Pharma, Genzyme, Merck, Novartis, Receptos, Roche, Sanofi, Teva
- Contracted Research: Biogen, Genzyme, Merck, Novartis, Receptos, Roche, Sanofi, Teva

Autoreactive T and B cells
Genetics1,2 Environment1,3

Many genes associated with increased risk for MS are immune-system related

Smoking
Geographic factors

Immune, Genetic, and Environmental Factors Contribute to the Development of RMS

Immune Dysregulation
Activated Autoreactive T and B cells
Entry Into CNS – Development of MS

Environmental risk factors/trigger:
- Virus
- Bacteria
- Vitamin D levels
- Smoking
- Geographic factors
B and T Cells are Drivers of the Neuroinflammatory Process of MS in the Lymph Node and the CNS

T Cell Mechanisms

Role of B Cells in MS

- B cells can contribute to the pathogenesis of MS through:
 - Cytokine production
 - Focused antigen presentation (APC)
 - Formation of autoantibodies
- Antibodies to multiple viruses, ANA, brain antigens, and "nonsense" antibodies can be detected in MS patients.
- High CD80 (B7-1) on the surface of MS B cells allows them to activate antigen-specific T cells.

T and B Cells Contribute to MS Pathophysiology, Independently and by Interacting with Each Other

Interactions Between T and B Cells

© 2016 Vindico Medical Education, LLC. All rights reserved.
MS is a Result of Imbalanced Immune Regulatory Networks: T and B Cells

Mechanisms of Damage and Recovery in MS: Summary

- Damage
 - Inflammation
 - Demyelination
 - Acute axonal transection
 - Chronic axonal degeneration
- Recovery
 - Remyelination
 - Brain plasticity

Disability Progression in Two Phases

This is one important factor in deciding to manage patients early to help slow progression, irrespective of initial clinical presentation.
Pathological Differences Between RRMS and Progressive MS (SPMS, PPMS)

- **RRMS**
 - New waves of inflammation entering the CNS from circulation
 - Focal demyelinating lesions with variable axonal injury and blood-brain barrier injury mainly in the white matter

- **RPMS**

- **SPMS / PPMS**
 - Compartmentalized inflammation in the CNS
 - Slow expansion of pre-existing white matter lesions
 - Diffuse inflammation and axonal injury in NAWM
 - Extensive cortical demyelination

Pathogenetic Mechanisms Underlying Progression

- Archelos JJ, Hartung HP. *Trends Neurosci.* 2000;23(7):317-27;

Meningeal B Cell Follicles

- Archelos JJ, Hartung HP. *Trends Neurosci.* 2000;23(7):317-27;

B Lymphocyte Roles in Multiple Sclerosis

Antibody production Antigen presentation Cytokine production Ectopic lymphoid tissue

CIS Relapsing MS Progressive MS

Acute Axonal Loss Remains Clinically Silent Until:

- A critical threshold in a given pathway is reached
- The compensatory CNS resources are exhausted

Disease Activity and Disability Progression in MS: Brain Adaptability is Finite and Individual

- A degree of functional reorganisation compensates for initial structural damage; however, this resource is finite

© 2016 Vindico Medical Education, LLC. All rights reserved.
Changing Perspectives on the Role of the Immune System in Multiple Sclerosis:
Pathology, Differentiation, and Targeted Therapies

“Delaying Treatment in MS:
What is Lost is Not Regained”

Inflammation
Degeneration
Disability
Response to treatment

? Clinical onset Time

EDSS 3

Dissecting the Data on New and Emerging High-efficacy Agents for RRMS and PPMS

Stephen L. Hauser, MD
Director, UCSF Weill Institute for Neurosciences
Professor and Chair, Department of Neurology
University of California, San Francisco
San Francisco, CA

© 2016 Vindico Medical Education, LLC. All rights reserved.
Disclosure

• Scientific Advisory Board: Annexon, Bionure, Molecular Stethoscope, Symbiotix
• Board of Trustees: Neurona

Targeting CD20+ B Cells May Preserve B Cell Reconstitution and Long-term Immune Memory

Ocrelizumab, Ofatumumab, and Ublituximab are monoclonal antibodies that selectively deplete CD20+ B cells

Ocrelizumab in Relapsing MS: Reduction in Annualized Relapse Rate Compared With IFN β-1a

<table>
<thead>
<tr>
<th></th>
<th>IFN β-1a (44 μg) (n=411)</th>
<th>Ocrelizumab (600 mg) (n=410)</th>
<th>Adjusted ARR at 96 Weeks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERA I</td>
<td>0.292</td>
<td>0.156</td>
<td>0.46% ARR reduction vs IFN β-1a, P < .0001</td>
</tr>
<tr>
<td>OPERA II</td>
<td>0.290</td>
<td>0.155</td>
<td>0.47% ARR reduction vs IFN β-1a, P < .0001</td>
</tr>
</tbody>
</table>
Ocrelizumab in Relapsing MS: Reduction in Mean Gadolinium-Enhancing Lesions Compared With IFNβ-1a

<table>
<thead>
<tr>
<th></th>
<th>Week 24</th>
<th>Week 48</th>
<th>Week 96</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN β-1a 44 μg</td>
<td>0.107</td>
<td>0.097</td>
<td>0.090</td>
</tr>
<tr>
<td>Ocrelizumab 600 mg</td>
<td>0.099</td>
<td>0.094</td>
<td>0.088</td>
</tr>
</tbody>
</table>

OPERA I

- IFN β-1a: 372, 357, 335
- Ocrelizumab: 382, 377, 359

- 95% reduction in number of lesions from baseline: P < 0.0001
- 98% reduction in number of lesions from baseline: P < 0.0001
- 91% reduction in number of lesions from baseline: P < 0.0001
- 92% reduction in number of lesions from baseline: P < 0.0001
- 96% reduction in number of lesions from baseline: P < 0.0001
- 97% reduction in number of lesions from baseline: P < 0.0001

Ocrelizumab in Primary Progressive MS: Reduction in 12-week Confirmed Disability Progression

- 24% reduction in risk of CDP: HR (95% CI): 0.76 (0.59, 0.98); P = 0.0321

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Ocrelizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to 12-week Confirmed Disability Progression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>244</td>
<td>487</td>
</tr>
<tr>
<td>IFN β-1a</td>
<td>232</td>
<td>462</td>
</tr>
<tr>
<td>Ocrelizumab</td>
<td>212</td>
<td>450</td>
</tr>
<tr>
<td>202</td>
<td>431</td>
<td>414</td>
</tr>
<tr>
<td>189</td>
<td>391</td>
<td>376</td>
</tr>
<tr>
<td>180</td>
<td>355</td>
<td>338</td>
</tr>
<tr>
<td>172</td>
<td>319</td>
<td>304</td>
</tr>
<tr>
<td>162</td>
<td>281</td>
<td>261</td>
</tr>
<tr>
<td>153</td>
<td>207</td>
<td>180</td>
</tr>
<tr>
<td>145</td>
<td>166</td>
<td>136</td>
</tr>
<tr>
<td>136</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>85</td>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>46</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
Daclizumab-HYP Inhibits High Affinity Interleukin-2 Receptor Signaling

- Humanized Mab
- Binds to α-subunit of the interleukin-2 receptor (CD25, IL-2Rα)
- Selective block of IL-2 signaling through the high-affinity IL-2 receptor
- Immunomodulatory effects:
 - Inhibits activated effector T cells
 - Expands CD56bright NK Cells
 - Decreased number of regulatory T (Treg) cells
- DAC-HYP does not have immune depleting or broadly immunosuppressive effects

Daclizumab-HYP in Relapsing MS: Primary Endpoint - Annualized Relapse Rate (ARR)

45% Reduction
(95% CI, 35.5%-53.1%)
\(P < .0001 \)

Daclizumab-HYP in Relapsing MS:
Effect on MRI-defined Lesions at Week 96

New/Newly Enlarging T2 Lesions

54% Reduction
\(P < .001 \)

New Gd+ Lesions

65% Reduction
\(P < .0001 \)

New T1 Hypointense Lesions ‘black holes’

52% Reduction
\(P < .0001 \)

IFN Beta-1a DAC HYP 150 mg

0.395
0.216

Annualized relapse rate

Estimated from a negative binomial regression model adjusted for baseline relapse rate, history of prior IFN use, baseline EDSS (<=2.5 vs > 2.5), days of treatment (n=919). Subjects are censored at the earlier of:
1) start of alternative MS medication, 2) 180 days post treatment discontinuation, or 3) end of treatment period.
Autologous Stem Cell Transplantation

- Multistep Procedure:
 - Hematopoietic stem cells harvested from PBL (or BM)
 - Immune system then ablated (varying intensity of conditioning regimen)
 - Harvested stem cells then re-infused, restoring a “naive” immune system
- Greater risk with more intensive conditioning regimens
- Studies to-date in MS have utilized various regimens, small cohorts, and variable follow-up periods

Imunoablation and Autologous Haemopoietic Stem Cell Transplantation for Aggressive MS: Multi-center Single Group Phase 2 Trial

- Between diagnosis and aHSCT, 24 patients had 167 clinical relapses over 140 patient-years with 188 Gd-enhancing lesions on 48 pre-aHSCT MRI scans
- Primary outcome, multiple sclerosis activity-free survival at 3 years after transplantation was 69.6% (95% CI 46.6–84.2)
 - With up to 13 years of follow-up after aHSCT, no relapses occurred and no Gd enhancing lesions or new T2 lesions were seen on 314 MRI sequential scans
- Rate of brain atrophy decreased to that expected for healthy controls

MS Therapies Have Consistent Effects on B cells

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Modulation</th>
<th>Differentiation</th>
<th>Activation</th>
<th>Migration</th>
<th>Depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-beta</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GA</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fgdl</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>DMF</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ter</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MTX</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Natalizumab</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*In humans and experimental models
Best Practices When Using Selective High-efficacy Agents

Prof. Xavier Montalban, MD, PhD
Chairman, Dept. of Neurology-Neuroimmunology
Director, Multiple Sclerosis Centre of Catalonia
Vall d’Hebron University Hospital
Barcelona, Spain
Disclosures

- Consulting Fee: Almirall, Bayer, Biogen, Genzyme, Merck, Novartis, Receptos, Roche, Sanofi-Genzyme, Teva

Key Aspects in the Management of MS

- Early and Accurate Diagnosis
- Early Treatment if Indicated
- Early Identification of Non-responders

In November 2016 in Philadelphia, US, the International Panel on Diagnosis of MS will meet for a forth time to….

New revision in Nov 2016
Do We Have Fundamental Treatment in Relapsing MS?

CIS/MS
- Interferon beta 1a SC
- Interferon beta 1a pegylated
- Interferon beta 1b SC
- Interferon beta 1a IM
- Glatiramer acetate 40 TIW
- Mitoxantrone
- Natalizumab
- Fingolimod
- Teriflunomide
- DMF
- Alemtuzumab
- Daclizumab
- Ocrelizumab

RELAPSING-REMITTING
- YES

SECONDARY PROGRESSIVE
- NO

Do We Have Fundamental Treatment in Progressive MS?

SECONDARY PROGRESSIVE
- NO

PRIMARY PROGRESSIVE
- YES

Treatment Decision in MS?

© 2016 Vindico Medical Education, LLC. All rights reserved.
Changing Perspectives on the Role of the Immune System in Multiple Sclerosis: Pathology, Differentiation, and Targeted Therapies

Disease MR predictors
- High T2 lesion burden
- ≥2 Gd+ / new T2 lesions
- Presence of T1 “black holes”
- Early discernable atrophy
- Infratentorial lesions
- Spinal cord lesions

Disease clinical predictors
- High number of relapses
- Incomplete recovery from relapses
- Early progression of disability
- Cerebellar, cognitive involvement

Demographics
- Male
- Older than 40 years
- Smoker
- Non-caucasian

Biological predictors
- Presence of IgG and IgM oligoclonal bands
- High levels of NFL
- High levels of Chitinase
- Low levels of Vit D

Treatment Decision Making Process

PROGNOSIS
Comorbidities:
- Diabetes
- Chronic lung disorders
- Hypertension
- Cardiac problems
- Chronic active infections (hepatitis, TB)
- Concomitant drugs
- Other concomitant autoimmune disorders (psoriasis, RA, others)
- Severe depression
- JCV status

Pregnancy
- Patient preferences

Other factors:
- Fatigue
- Profession
- Distance from hospitals
- Travels needs
- Needle phobia
- Adherence expectations

Assessing Treatment Failure: The Rio Score

The Rio Score
- Relapse: ≥1 in first 12 months
- EDSS: increase of 1 point confirmed 6 months
- MRI: ≥3 active lesions (T2 or Gd+)

© 2016 Vindico Medical Education, LLC. All rights reserved.
Changing Perspectives on the Role of the Immune System in Multiple Sclerosis: Pathology, Differentiation, and Targeted Therapies

Predictors of Long-Term Disability

<table>
<thead>
<tr>
<th>Predictor</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NewT2 >0</td>
<td>2.1 (1.1 - 4.2)</td>
</tr>
<tr>
<td>NewT2 >1</td>
<td>2.3 (1.7 - 3.0)</td>
</tr>
<tr>
<td>NewT2 >2</td>
<td>3.5 (2.4 - 5.0)</td>
</tr>
<tr>
<td>Gad 1</td>
<td>1.2 (0.7 - 2.0)</td>
</tr>
<tr>
<td>Gad 1+2</td>
<td>1.2 (0.7 - 2.0)</td>
</tr>
<tr>
<td>Relapses</td>
<td>1.8 (0.9 - 3.2)</td>
</tr>
<tr>
<td>Δ 1 EDSS</td>
<td>3.1 (1.7 - 5.6)</td>
</tr>
<tr>
<td>MRI</td>
<td>1.6 (0.7 - 3.4)</td>
</tr>
</tbody>
</table>

Treatment Algorithms in Patients with Ongoing Disease Activity

- Interferon beta 1b
- Interferon beta 1a SC
- Interferon beta 1a IM
- Glatiramer Acetate
- Teriflunomide
- DMF
- Fingolimod
- Natalizumab
- Alemtuzumab
- Rituximab/Ocrelizumab
- Others

Shared Decision Making

Shared decision making combines the measurement of patient preferences with evidence-based practice.

© 2016 Vindico Medical Education, LLC. All rights reserved.